Multi-period descriptive sampling for scenario generation applied to the stochastic capacitated lot-sizing problem

Author:

Stadtler Hartmut,Heinrichs NikolaiORCID

Abstract

AbstractUsing scenarios to model a stochastic system’s behavior poses a dilemma. While a large(r) set of scenarios usually improves the model’s accuracy, it also causes drastic increases in the model’s size and the computational effort required. Multi-period descriptive sampling (MPDS) is a new way to generate a small(er) set of scenarios that yield a good fit both to the periods’ probability distributions and to the convoluted probability distributions of stochastic variables (e.g., period demands) over time. MPDS uses descriptive sampling to draw a sample of S representative random numbers from a period’s known (demand) distribution. Now, to create a set of S representative scenarios, MPDS heuristically combines these random numbers (period demands) period by period so that a good fit is achieved to the convoluted (demand) distributions up to any period in the planning interval. A further contribution of this paper is an (accuracy) improvement heuristic, called fine-tuning, executed once the fix-and-optimize (FO) heuristic to solve a scenario-based mixed integer programming model has been completed. Fine-tuning uses linear programming (LP) with fixed binary variables (e.g., setup decisions) generated by FO and iteratively adapts production quantities so that compliance with given expected service level constraints is reached. The LP is solved with relatively little computational effort, even for large(r) sets of scenarios. We show the advancements possible with MPDS and fine-tuning by solving numerous test instances of the stochastic capacitated lot-sizing problem under a static uncertainty approach.

Funder

Deutsche Forschungsgemeinschaft

Universität Hamburg

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3