Partial dominance in branch-price-and-cut algorithms for vehicle routing and scheduling problems with a single-segment tradeoff

Author:

Faldum StefanORCID,Machate Sarah,Gschwind TimoORCID,Irnich StefanORCID

Abstract

AbstractFor many variants of vehicle routing and scheduling problems solved by a branch-price-and-cut (BPC) algorithm, the pricing subproblem is an elementary shortest-path problem with resource constraints (SPPRC) typically solved by a dynamic-programming labeling algorithm. Solving the SPPRC subproblems consumes most of the total BPC computation time. Critical to the performance of the labeling algorithms and thus the BPC algorithm as a whole is the use of effective dominance rules. Classical dominance rules rely on a pairwise comparison of labels and have been used in many labeling algorithms. In contrast, partial dominance describes situations where several labels together are needed to dominate another label, which can then be safely discarded. In this work, we consider SPPRCs, where a linear tradeoff describes the relationship between two resources. We derive a unified partial dominance rule to be used in ad hoc labeling algorithms for solving such SPPRCs as well as insights into its practical implementation. We introduce partial dominance for two important variants of the vehicle routing problem, namely the electric vehicle routing problem with time windows with a partial recharge policy and the split-delivery vehicle routing problem with time windows (SDVRPTW). Computational experiments show the effectiveness of the approach, in particular for the SDVRPTW, leading to an average reduction of 20% of the total BPC computation time, with savings of 30% for the more difficult instances requiring more than 600 s of computation time.

Funder

Deutsche Forschungsgemeinschaft

Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau

Publisher

Springer Science and Business Media LLC

Reference55 articles.

1. Achterberg T (2007) Constraint integer programming. Ph.D. thesis, Technische Universität Berlin, Fakultät II—Mathematik und Naturwissenschaften, Berlin, Germany

2. Aerts-Veenstra M, Cherkesly M, Gschwind T (2023) A unified branch-price-and-cut algorithm for multi-compartment pickup and delivery problems. Les Cahiers du GERAD G-2023-26, Groupe d’études et de recherche en analyse des décisions, GERAD, Montréal QC H3T 2A7, Canada

3. Archetti C, Speranza MG, Hertz A (2006) A tabu search algorithm for the split delivery vehicle routing problem. Transp Sci 40(1):64–73

4. Archetti C, Bouchard M, Desaulniers G (2011) Enhanced branch and price and cut for vehicle routing with split deliveries and time windows. Transp Sci 45(3):285–298

5. Baldacci R, Mingozzi A, Roberti R (2011) New route relaxation and pricing strategies for the vehicle routing problem. Oper Res 59(5):1269–1283

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3