Abstract
Abstract
Purpose
Acute exercise elicits a transient anti-inflammatory state during the early recovery period. Since recent studies reported on regimen-specific effects on immune-related humoral factors and cellular subsets, this study compared the effects of intensity- and time-matched acute interval and continuous exercise on peripheral anti-inflammatory cellular and humoral immune parameters with a particular focus on the PD-1 expression in CD4+ regulatory T cells (Tregs).
Methods
Twenty-four recreationally active runners (age: 29.7 ± 4.3 years, BMI: 22.2 ± 2.4, VO2peak: 56.6 ± 6.4 ml × kg−1 × min−1) participated in this crossover RCT. Each subject conducted a moderate continuous (MCE) and a high-intensity interval exercise (HIIE) session in a counterbalanced design. Blood was drawn before, immediately after, and 1 h after exercise. Treg subsets and levels of PD-1 and Foxp3 were assessed by flow cytometry. Serum levels of IL-10 and IL-6 were quantified by ELISA.
Results
PD-1 levels on Tregs increased within the recovery period after HIIE (p < .001) and MCE (p < 0.001). Total counts of Tregs (HIIE: p = 0.044; MCE: p = .021), naïve Tregs (HIIE: p < 0.001; MCE: p < 0.001), and PD-1+ effector Tregs (eTregs) (HIIE: p = .002) decreased 1 h after exercise. IL-10 increased 1 h after HIIE (p < 0.001) and MCE (p = 0.018), while IL-6 increased immediately after both HIIE (p = 0.031) and MCE (p = 0.021). Correlations between changes in IL-6 and IL-10 (p = 0.017, r = 0.379) and baseline VO2peak and Treg frequency (p = 0.002, r = 0.660) were identified.
Conclusion
This is the first study that investigates PD-1 expression in circulating Tregs after acute exercise, revealing an increase in PD-1 levels on eTregs during the early recovery period after intensity- and time-matched HIIE and MCE. Future studies are needed to investigate the PD-1 signalosome in eTregs, together with the expression of key effector molecules (i.e., IL-10, TGF-β, IL-35, CTLA-4) to elucidate PD-1-dependent changes in cellular function. Based on changes in serum cytokines, this study further reveals a regimen-independent establishment of an anti-inflammatory milieu and underpins the role of the IL-6/IL-10 axis.
Funder
Deutsche Sporthochschule Köln
Technische Universität Dortmund
Publisher
Springer Science and Business Media LLC
Subject
Physiology (medical),Public Health, Environmental and Occupational Health,Orthopedics and Sports Medicine,General Medicine,Public Health, Environmental and Occupational Health,Physiology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献