Abstract
Abstract
Purpose
The acute physiological, perceptual and neuromuscular responses to volume-matched running and cycling high intensity interval training (HIIT) were studied in team sport athletes.
Methods
In a randomized cross-over design, 11 male team sport players completed 3 × 6 min (with 5 min between sets) repeated efforts of 15 s exercising at 120% speed (s$$\dot{\text{V}}$$
V
˙
O2max) or power (p$$\dot{\text{V}}$$
V
˙
O2max) at $$\dot{\text{V}}$$
V
˙
O2max followed by 15 s passive recovery on a treadmill or cycle ergometer, respectively.
Results
Absolute mean $$\dot{\text{V}}$$
V
˙
O2 (ES [95% CI] = 1.46 [0.47–2.34], p < 0.001) and heart rate (ES [95% CI] = 1.53 [0.53–2.41], p = 0.001) were higher in running than cycling HIIT. Total time at > 90% $$\dot{\text{V}}$$
V
˙
O2max during the HIIT was higher for running compared to cycling (ES [95% CI] = 1.21 [0.26–2.07], p = 0.015). Overall differential RPE (dRPE) (ES [95% CI] = 0.55 [− 0.32–1.38], p = 0.094) and legs dRPE (ES [95% CI] = − 0.65 [− 1.48–0.23], p = 0.111) were similar, whereas breathing dRPE (ES [95% CI] = 1.01 [0.08–1.85], p = 0.012) was higher for running. Maximal isometric knee extension force was unchanged after running (ES [95% CI] = − 0.04 [− 0.80–0.8], p = 0.726) compared to a moderate reduction after cycling (ES [95% CI] = − 1.17 [− 2.02–0.22], p = 0.001).
Conclusion
Cycling HIIT in team sport athletes is unlikely to meet the requirements for improving run-specific metabolic adaptation but might offer a greater lower limb neuromuscular load.
Publisher
Springer Science and Business Media LLC
Subject
Physiology (medical),Public Health, Environmental and Occupational Health,Orthopedics and Sports Medicine,General Medicine,Public Health, Environmental and Occupational Health,Physiology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献