Bone mineral density in high-level endurance runners: part A—site-specific characteristics

Author:

Herbert A. J.ORCID,Williams A. G.,Lockey S. J.,Erskine R. M.,Sale C.,Hennis P. J.,Day S. H.,Stebbings G. K.

Abstract

Abstract Purpose Physical activity, particularly mechanical loading that results in high-peak force and is multi-directional in nature, increases bone mineral density (BMD). In athletes such as endurance runners, this association is more complex due to other factors such as low energy availability and menstrual dysfunction. Moreover, many studies of athletes have used small sample sizes and/or athletes of varying abilities, making it difficult to compare BMD phenotypes between studies. Method The primary aim of this study was to compare dual-energy X-ray absorptiometry (DXA) derived bone phenotypes of high-level endurance runners (58 women and 45 men) to non-athletes (60 women and 52 men). Our secondary aim was to examine the influence of menstrual irregularities and sporting activity completed during childhood on these bone phenotypes. Results Female runners had higher leg (4%) but not total body or lumbar spine BMD than female non-athletes. Male runners had lower lumbar spine (9%) but similar total and leg BMD compared to male non-athletes, suggesting that high levels of site-specific mechanical loading was advantageous for BMD in females only and a potential presence of reduced energy availability in males. Menstrual status in females and the number of sports completed in childhood in males and females had no influence on bone phenotypes within the runners. Conclusion Given the large variability in BMD in runners and non-athletes, other factors such as variation in genetic make-up alongside mechanical loading probably influence BMD across the adult lifespan.

Publisher

Springer Science and Business Media LLC

Subject

Physiology (medical),Public Health, Environmental and Occupational Health,Orthopedics and Sports Medicine,General Medicine,Public Health, Environmental and Occupational Health,Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3