Cortical and spinal responses to short-term strength training and detraining in young and older adults in rectus femoris muscle

Author:

Gomez-Guerrero GonzaloORCID,Avela JanneORCID,Jussila IlkkaORCID,Pihlajamäki EsaORCID,Deng Fu-YuORCID,Kidgell Dawson J.ORCID,Ahtiainen Juha P.ORCID,Walker SimonORCID

Abstract

Abstract Introduction Strength training mitigates the age-related decline in strength and muscle activation but limited evidence exists on specific motor pathway adaptations. Methods Eleven young (22–34 years) and ten older (66–80 years) adults underwent five testing sessions where lumbar-evoked potentials (LEPs) and motor-evoked potentials (MEPs) were measured during 20 and 60% of maximum voluntary contraction (MVC). Ten stimulations, randomly delivered, targeted 25% of maximum compound action potential for LEPs and 120, 140, and 160% of active motor threshold (aMT) for MEPs. The 7-week whole-body resistance training intervention included five exercises, e.g., knee extension (5 sets) and leg press (3 sets), performed twice weekly and was followed by 4 weeks of detraining. Results Young had higher MVC (~ 63 N·m, p = 0.006), 1-RM (~ 50 kg, p = 0.002), and lower aMT (~ 9%, p = 0.030) than older adults at baseline. Young increased 1-RM (+ 18 kg, p < 0.001), skeletal muscle mass (SMM) (+ 0.9 kg, p = 0.009), and LEP amplitude (+ 0.174, p < 0.001) during 20% MVC. Older adults increased MVC (+ 13 N·m, p = 0.014), however, they experienced decreased LEP amplitude (− 0.241, p < 0.001) during 20% MVC and MEP amplitude reductions at 120% (− 0.157, p = 0.034), 140% (− 0.196, p = 0.026), and 160% (− 0.210, p = 0.006) aMT during 60% MVC trials. After detraining, young and older adults decreased 1-RM, while young adults decreased SMM. Conclusion Higher aMT and MEP amplitude in older adults were concomitant with lower baseline strength. Training increased strength in both groups, but divergent modifications in cortico-spinal activity occurred. Results suggest that the primary locus of adaptation occurs at the spinal level.

Funder

University of Jyväskylä

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3