An examination of five theoretical foundations associated with localized thermosensory testing

Author:

Temel MevraORCID,Johnson Andrew A.ORCID,Havenith GeorgeORCID,Arnold Josh T.ORCID,West Anna M.ORCID,Lloyd Alex B.ORCID

Abstract

Abstract Purpose To assess five theoretical foundations underlying thermosensory testing using local thermal stimuli. Methods Thermal sensation, discomfort and the confidence of thermal sensation scores were measured in 9 female and 8 male volunteers in response to 17 physical contact temperature stimuli, ranging between 18–42 °C. These were applied to their dorsal forearm and lateral torso, across two sessions. Results Thermal sensation to physical temperature relationships followed a positive linear and sigmoidal fit at both forearm (r2 = 0.91/r2 = 0.91, respectively) and lateral torso (r2 = 0.90/ r2 = 0.91, respectively). Thermal discomfort to physical temperature relationships followed second and third-order fits at both forearm (r2 = 0.33/r2 = 0.34, respectively) and lateral torso (r2 = 0.38/r2 = 0.39, respectively) test sites. There were no sex-related or regional site differences in thermal sensation and discomfort across a wide range of physical contact temperatures. The median confidence of an individual’s thermal sensation rating was measured at 86%. Conclusion The relation between thermal sensation and physical contact temperature was well described by both linear and sigmoidal models, i.e., the distance between the thermal sensation anchors is close to equal in terms of physical temperatures changes for the range studied. Participants rated similar thermal discomfort level in both cold and hot thermal stimuli for a given increase or decrease in physical contact temperature or thermal sensation. The confidence of thermal sensation rating did not depend on physical contact temperature.

Funder

Turkey Ministry of National Education

Publisher

Springer Science and Business Media LLC

Subject

Physiology (medical),Public Health, Environmental and Occupational Health,Orthopedics and Sports Medicine,General Medicine,Public Health, Environmental and Occupational Health,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3