Abstract
Abstract
Purpose
Resistance training-induced skeletal muscle hypertrophy seems to depend on ribosome biogenesis and content. High glucose treatment may augment ribosome biogenesis through potentiating resistance training-induced adaptations. This was investigated with total RNA and ribosomal RNA abundances as main outcomes, with relevant transcriptional/translational regulators (c-Myc/UBF/rpS6) as a secondary outcome.
Methods
Sixteen healthy, moderately trained individuals [male/female, n = 9/7; age, 24.1 (3.3)] participated in a within-participant crossover trial with unilateral resistance training (leg press and knee extension, 3 sets of 10 repetitions maximum) and pre- and post-exercise ingestion of either glucose (3 × 30 g, 90 g total) or placebo supplements (Stevia rebaudiana, 3 × 0.3 g, 0.9 g total), together with protein (2 × 25 g, 50 g total), on alternating days for 12 days. Six morning resistance exercise sessions were conducted per condition, and the sessions were performed in an otherwise fasted state. Micro-biopsies were sampled from m. vastus lateralis before and after the intervention.
Results
Glucose ingestion did not have beneficial effects on resistance training-induced increases of ribosomal content (mean difference 7.6% [− 7.2, 24.9], p = 0.34; ribosomal RNA, 47S/18S/28S/5.8S/5S, range 7.6–37.9%, p = 0.40–0.98) or levels of relevant transcriptional or translational regulators (c-MYK/UBF/rpS6, p = 0.094–0.292). Of note, both baseline and trained state data of total RNA showed a linear relationship with UBF; a ∼14% increase in total RNA corresponded to 1 SD unit increase in UBF (p = 0.003).
Conclusion
Glucose ingestion before and after resistance training sessions did not augment ribosomal RNA accumulation during twelve days of heavy-load resistance training in moderately trained young adults.
Funder
Høgskolen i Innlandet
Inland Norway University Of Applied Sciences
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献