Abstract
Abstract
Purpose
Hamstring strain injuries may occur due to differential fatigue and compromised mechanical properties among the hamstring muscles. We examined (1) the effect of fatigue on hamstrings active muscle stiffness, and (2) whether contraction type affects active muscle stiffness changes during a submaximal fatiguing task.
Methods
Nine healthy males completed 99 submaximal knee flexions in isometric (ISO), concentric (CON), and eccentric (ECC) conditions. We measured the knee flexor maximal voluntary torque (MVT) (pre/post), shear wave velocity (SWV) during contraction and transverse relaxation times (T2) (pre/post) in biceps femoris long head (BFlh), semitendinosus (ST), and semimembranosus (SM) muscles.
Results
MVT decreased substantially after all conditions (− 18.4 to − 33.6%). The average relative torque sustained during the task was lower in CON than ISO and ECC, but absolute torque was similar. SWV interindividual responses were highly variable across muscles and contraction types. On average, BFlh SWV tended to increase in ISO (0.4 m/s, 4.5%, p = 0.064) but decreased in ECC condition (− 0.8 m/s, − 7.7%, p < 0.01). ST SWV decreased in CON (− 1.1 m/s, − 9.0%, p < 0.01), while it remained unchanged in ISO and ECC. SM SWV decreased in CON (− 0.8 m/s, − 8.1%, p < 0.01), but it was unaffected in ISO and variable in ECC.
Conclusion
Fatigue has a differential effect on the mechanical properties of the constituent hamstring muscles, as measured with shear wave elastography, depending upon contraction type. We found preliminary evidence that BFlh is more fatigued than ST or SM during eccentric contractions, which may explain its susceptibility to strain injuries.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Physiology (medical),Public Health, Environmental and Occupational Health,Orthopedics and Sports Medicine,General Medicine,Public Health, Environmental and Occupational Health,Physiology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献