Earthquake Characteristics and Structural Properties of the Southern Tyrrhenian Basin from Full Seismic Wave Simulations

Author:

Nardoni Chiara,De Siena LucaORCID,Magrini Fabrizio,Cammarano Fabio,Maeda Takuto,Mattei Elisabetta

Abstract

AbstractModelling the response of seismic wavefields to sharp lateral variations in crustal discontinuities is essential for seismic tomography application and path effects correction in earthquake source characterization. This is particularly relevant when wavefields cross back-arc oceanic basins, i.e. mixed continental-oceanic settings. High-frequency (>0.05 Hz) seismic waves resonate and get absorbed across these settings due to a shallow Moho, crustal heterogeneities, and energy leakage. Here, we provide the first high-frequency wave-equation model of full seismograms propagating through realistic 3D back-arc basins. Inversion by parameters trial based on correlation analyses identifies P-, S- and coda-wave as attributes able to estimate jointly 3D Moho variations, sediment thickness, and earthquake source characteristics using data from a single regional earthquake. We use as data waveforms produced by the Accumoli earthquake (Central Italy, 2016), propagating across the Southern Tyrrhenian basin and recorded across Southern Italy. The best model comprises a deep Moho ($$\sim$$ 18 km) in the middle of the basin and a crustal pinch with the continental crust in Sicily. The deep Moho corresponds to the Issel Bridge, a portion of continental crust trapped between the Vavilov and Marsili volcanic centres. The Accumoli earthquake is optimally described at a depth of 7.3 km using a boxcar with rise time of 6 s. Our results show that the early S-wave coda comprises trapped and reverberating phases sensitive to crustal interfaces. Forward modelling these waves is computationally expensive; however, adding these attributes to tomographic procedures allows modelling both source and structural parameters across oceanic basins.

Funder

Deutsche Forschungsgemeinschaft

Johannes Gutenberg-Universität Mainz

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3