Abstract
AbstractEarthquakes pose a significant hazard, and due to the growth of vulnerable, exposed populations, global levels of seismic risk are increasing. In the past three decades, a dramatic improvement in the volume, quality and consistency of satellite observations of solid earth processes has occurred. I review the current Earth Observing (EO) systems commonly used for measuring earthquake and crustal deformation that can help constrain the potential sources of seismic hazard. I examine the various current contributions and future potential for EO data to feed into aspects of the earthquake disaster management cycle. I discuss the implications that systematic assimilation of Earth Observation data has for the future assessment of seismic hazard and secondary hazards, and the contributions it will make to earthquake disaster risk reduction. I focus on the recent applications of Global Navigation Satellite System (GNSS) and increasingly the use of Interferometric Synthetic Aperture Radar (InSAR) for the derivation of crustal deformation and these data’s contribution to estimates of hazard. I finish by examining the outlook for EO in geohazards in both science and decision-making, as well as offering some recommendations for an enhanced acquisition strategy for SAR data.
Funder
Royal Society
Natural Environment Research Council
Publisher
Springer Science and Business Media LLC
Subject
Geochemistry and Petrology,Geophysics
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献