Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Theory and Mathematics,Analysis
Reference19 articles.
1. L. V. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostrand, Princeton, NJ, 1966.
2. V. V. Andrievskii, A description of functions with given rate of decrease of their best uniform polynomial approximations (Russian), Ukrain Mat. Zh. 36 (1984), 602–606.
3. V. V. Andrievskii and V. I. Belyi, Approximation of functions in domains with a quasiconformal boundary, Math. Notes 29 (1981), 214–219.
4. V. V. Andrievskii, V. I. Belyi, and V. K. Dzjadyk, Conformal Invariants in Constructive Theory of Functions of Complex Variable, Georgian World Federation Publisher, Atlanta, 1991.
5. V. V. Andrievskii, V. I. Belyi, and V. V. Maimeskul, Approximation of solutions of the equation % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC % vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz % ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbb % L8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpe % pae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabeqaam % aaeaqbaaGcbaGafyOaIyRbaebadaahaaWcbeqaaiabdQgaQbaaaaa!3DD3! $$\bar \partial ^j$$ f = 0, j ≥ 1 in domains with a quasiconformal boundary, Math. USSR Sb. 68 (1991), 303–323.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献