A reduced-order lie group-based race car model for systematic trajectory optimization on 3D tracks

Author:

Bartali LorenzoORCID,Gabiccini Marco,Grabovic Eugeniu,Domenighini Marcello,Guiggiani Massimo

Abstract

AbstractThis paper derives the dynamic equations of a reduced-order race-car model using Lie-group methods. While these methods are familiar to computational dynamicists and roboticists, their adoption in the vehicle dynamics community is limited. We address this gap by demonstrating how this framework integrates smoothly with the Articulated-Body Algorithm (ABA) and provides a fresh and systematic formulation of vehicle dynamics. For the first time, we model the car body as the end effector of a serial robot with a floating base connected to the track via virtual revolute and prismatic joints. Our formulation also accounts for the effects of 3D track geometry, providing a natural embedding of the car into the 3D track. We rigorously reconcile the ABA steps with key aspects of vehicle dynamics, including road-tire interactions, aerodynamic forces, and load transfers. The resulting model, simple yet accurate, is a powerful tool to efficiently solve Minimum-Lap-Time Planning problems. To demonstrate the effectiveness of our approach, we show numerical results obtained on the Nürburgring circuit. Our optimization problem is formulated via a direct collocation method and solved using the CasADi optimization suite. To validate the results, we test our reduced-order model against a full-fledged multi-body model recently developed by the same authors. The comparison confirms the validity of our reduced-order model, proving both the accuracy of the solution and the computational efficiency achieved.

Funder

Università di Pisa

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3