Arch bridges subject to pier settlements: continuous vs. piecewise rigid displacement methods

Author:

Malena Marialaura,Angelillo Maurizio,Fortunato Antonio,de Felice GianmarcoORCID,Mascolo Ida

Abstract

AbstractSettlements severely affect historic masonry arch bridges worldwide. There are countless examples of structural dislocations and ruins in recent years due to severe settlements at the base of pier foundations, often caused by shipworm infestation of wooden foundations or scouring and riverbed erosion phenomena. The present paper proposes an original way to approach the failure analysis of settled masonry arch bridges. The proposed method combines two different 2D numerical models for the prediction of masonry arch bridge capacity against settlements and for safety assessment. The first one is the Piecewise Rigid Displacement method, i.e. a block-based limit analysis approach using the well known Heyman's hypotheses; the second one is a continuous Finite Element approach. The case study of the four-span Deba Bridge (Spain, 2018) failure is presented with the aim to illustrate how the methods work. The failure analysis produced satisfactory results by applying both methods separately, in confirmation of their reliability. Their combination also allowed to obtain a significantly reduction in computational cost and an improvement of prediction accuracy. A sensitivity and a path-following analysis were also performed with the aim to demonstrate the robustness of the presented method. The obtained simulations highlighted that the results do not depend on the friction angle and that a proper prediction of the evolution of the structural behavior can be obtained only taking into account geometric nonlinearities. Such results demonstrate once again that in settled masonry arches geometry prevails over the mechanical parameters. The current study paves the way for the fruitful use of the proposed approaches for a wider range of applications, as, for example, the mechanism identification or the displacement capacity assessment of masonry structures under overloading as seismic loads.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Università degli Studi Roma Tre

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3