Resonance study of spring pendulum based on asymptotic solutions with polynomial approximation in quadratic means

Author:

Sypniewska-Kamińska Grażyna,Awrejcewicz Jan,Kamiński Henryk,Salamon Robert

Abstract

AbstractThe nonlinearities of geometric nature that is characteristic for pendulum-type systems are expressed by the trigonometric functions. In order to apply the method of multiple scales in time domain to solve problems concerning such systems, the trigonometric functions of the generalised coordinates are usually approximated by a few terms of their Taylor series. In the paper we apply the polynomial approximation in quadratic means. In contrast to the approximation by Taylor series, the proposed manner approximates the trigonometric functions not around a given point but on the given interval. Quality and accuracy of the solutions obtained using the multiple scales method based on such approach have been tested. The steady state responses in the main resonance have been also examined and compared with their counterparts obtained using the method of multiple scales based on the Taylor series.

Funder

Ministerstwo Nauki i Szkolnictwa Wyższego

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3