Investigating frictional contact behavior for soft material robot simulations

Author:

Berthold RebeccaORCID,Burgner-Kahrs Jessica,Wangenheim Matthias,Kahms Stephanie

Abstract

AbstractThe ability to interact safely with the environment is known as one of the major advantages of soft robots (SRs). Due to their low material stiffness, these continuously deformable robots offer inherent flexibility. These advantages make them suitable for application that involve human-robot collaboration in industrial settings as well as medical application such as minimally invasive surgery. To date only few research groups have analyzed the contact and frictional behavior of soft robots. In fact, the contact behavior is often oversimplified or neglected. Motivated by the idea to bridge this gap, this work presents measurements and the resulting coefficient of friction (COF) for silicone rubbers that are widely used in the field of SRs and different contact partners which depend on contact pressure and ambient temperature. From these measurements, a more representative contact model is established and used to more accurately simulate soft material robots’ frictional contact behavior. Moreover the influence of friction and therefore the need to implement frictional behavior is demonstrated for a typical application of a SR.

Funder

Deutsche Forschungsgemeinschaft

Gottfried Wilhelm Leibniz Universität Hannover

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3