Numerical investigations of the vortex feature-based vorticity confinement models for the assessment in three-dimensional vortex-dominated flows

Author:

Fu JinbinORCID,Yuan Yi,Vigevano Luigi

Abstract

AbstractIn order to improve the vortex resolution in aerodynamic wakes, a locally normalized vortex feature-based vorticity confinement method is implemented into the multi-block, structured computational fluid dynamics solver (ROSITA). In this method, the second vorticity confinement (VC2) scheme with two well-known vortex feature detection methods (non-dimensional Q criterion, non-dimensional $$\lambda _2$$ λ 2 criterion) is employed to counterbalance the truncation error introduced by the numerical discretization of the convective term. The flow field of two benchmark three-dimensional steady vortex-dominated cases, the NACA0015 wing and the Caradonna–Tung hovering rotor, is simulated with the implemented method. The improvements in aerodynamics prediction, vorticity preservation, computational stability, and efficiency are demonstrated. From the numerical results, the vortex feature-based confinement models significantly improve the computational stability, the aerodynamic loads prediction and vorticity preservation capability, especially for the $$\lambda _2$$ λ 2 –based VC2 model. In addition, it allows the use of higher confinement parameters on a coarse grid with a relatively higher computational efficiency to obtain better results than those of a finer grid.

Funder

China Scholarship Council

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3