Combining machine learning with computational fluid dynamics using OpenFOAM and SmartSim

Author:

Maric Tomislav,Fadeli Mohammed Elwardi,Rigazzi Alessandro,Shao Andrew,Weiner Andre

Abstract

AbstractCombining machine learning (ML) with computational fluid dynamics (CFD) opens many possibilities for improving simulations of technical and natural systems. However, CFD+ML algorithms require exchange of data, synchronization, and calculation on heterogeneous hardware, making their implementation for large-scale problems exceptionally challenging. We provide an effective and scalable solution to developing CFD+ML algorithms using open source software OpenFOAM and SmartSim. SmartSim provides an Orchestrator that significantly simplifies the programming of CFD+ML algorithms enables scalable data exchange between ML and CFD clients. We show how to leverage SmartSim to effectively couple different segments of OpenFOAM with ML, including pre/post-processing applications, function objects, and mesh motion solvers. We additionally provide an OpenFOAM sub-module with examples that can be used as starting points for real-world applications in CFD+ML.

Funder

Deutsche Forschungsgemeinschaft

Hewlett Packard Enterprise HPC&AI business unit

Technische Universität Darmstadt

Publisher

Springer Science and Business Media LLC

Reference23 articles.

1. OpenFOAM Committee for Data-Driven Modeling (2024). https://github.com/OFDataCommittee

2. OpenFOAM version 2312 (2023). https://www.openfoam.com/news/main-news/openfoam-v2312

3. SmartSim version 0.6.2. https://github.com/CrayLabs/SmartSim/releases/tag/v0.6.2 (2024)

4. SmartRedis version 0.5.2. https://github.com/CrayLabs/SmartRedis/releases/tag/v0.5.2 (2024)

5. Maric T, Fadeli ME, Rigazzi A, Shao A, Weiner A (2024) Git repository of the OpenFOAM-SmartSim module. https://github.com/OFDataCommittee/openfoam-smartsim/tree/v1.0. version v1.0

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3