Tolerance and asymptotic modelling of dynamic thermoelasticity problems for thin micro-periodic cylindrical shells

Author:

Tomczyk Barbara,Gołąbczak MarcinORCID

Abstract

AbstractThe problem of linear dynamic thermoelasticity in Kirchhoff–Love-type circular cylindrical shells having properties periodically varying in circumferential direction (uniperiodic shells) is considered. In order to describe thermoelastic behaviour of such shells, two mathematical averaged models are proposed—the non-asymptotic tolerance and the consistent asymptotic models. Considerations are based on the known Kirchhoff–Love theory of elasticity combined with Duhamel-Neumann thermoelastic constitutive relations and on Fourier’s theory of heat conduction. The non-asymptotic tolerance model equations depending on a cell size are derived applying the tolerance averaging technique and a certain extension of the known stationary action principle. The consistent asymptotic model equations being independent on a microstructure size are obtained by means of the consistent asymptotic approach. Governing equations of both the models have constant coefficients, contrary to starting shell equations with periodic, non-continuous and oscillating coefficients. As examples, two special length-scale problems will be analysed in the framework of the proposed models. The first of them deals with investigation of the effect of a cell size on the shape of initial distributions of temperature micro-fluctuations. The second one deals with study of the effect of a microstructure size on the distribution of total temperature field approximated by sum of an averaged temperature and temperature fluctuations.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference28 articles.

1. Bensoussan A, Lions JL, Papanicolau G (1978) Asymptotic analysis for periodic structures. North-Holland Publishing Co., Amsterdam

2. Jikov VV, Kozlov CM, Olejnik OA (1994) Homogenization of differential operators and integral functionals. Springer, Berlin

3. Lutoborski A (1985) Homogenization of linear elastic shells. J Elast 15:69–87

4. Lewiński T, Telega JJ (2000) Plates, laminates and shells. Asymptotic analysis and homogenization. World Scientific Publishing Company, Singapore

5. Woźniak C, Wierzbicki E (2000) Averaging techniques in thermomechanics of composite solids. Tolerance averaging versus homogenization. Częstochowa University Press, Częstochowa

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3