Structural response of half-scale pumice concrete masonry building: shake table/ambient vibration tests and FE analysis

Author:

Kaya Ali,Roudane Boudjamaa,Adanur Süleyman,Sunca Fezayil,Genç Ali Fuat,Gunaydin Murat,Altunişik Ahmet Can

Abstract

AbstractSeismic performance evaluation of masonry structures is of paramount importance for ensuring the safety and resilience of buildings in earthquake-prone regions. There are limited number of studies on pumice elements in the literature. In addition, there are almost no studies investigating the earthquake behavior of pumice masonry building as a whole structure. In this context, a comprehensive understanding of their seismic response and dynamic characteristics has been lacking. To address this knowledge gap, a shake-table experimental campaign was undertaken, wherein half-scale pumice masonry building was exposed to simulated seismic forces. To enhance the experimental findings, numerical simulations were performed to confirm and expand our comprehension of how the pumice masonry structure responds to dynamic forces. Integrating both experimental and numerical outcomes provides a holistic understanding of how pumice masonry buildings behave during seismic events. At the end of the experimental study, the frequency values of the pumice model were observed to decrease up to 23.5% in the modes compared to the undamaged state. In the numerical model, this value decreases up to 19.85%. For the undamaged and damaged model, the first three experimental mode shapes were similar to the numerical mode shapes. Both experimental and numerical results show that the expected damages occur in the same regions. These results show that nonlinear FE models can be helpful in determining potential damage model locations. The findings have implications for the seismic design and retrofitting of similar traditional masonry buildings, facilitating the development of resilient and sustainable engineering solutions in seismic-prone regions.

Funder

Karadeniz Technical University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3