Abstract
AbstractWe report a unique tuneable analogue trend in particle focusing in the laminar and weak viscoelastic regime of elasto-inertial flows. We observe experimentally that particles in circular cross-section microchannels can be tuned to any focusing bandwidths that lie between the “Segre-Silberberg annulus” and the centre of a circular microcapillary. We use direct numerical simulations to investigate this phenomenon and to understand how minute amounts of elasticity affect the focussing of particles at increasing flow rates. An Immersed Boundary Method is used to account for the presence of the particles and a FENE-P model is used to simulate the presence of polymers in a Non-Newtonian fluid. The numerical simulations study the dynamics and stability of finite size particles and are further used to analyse the particle behaviour at Reynolds numbers higher than what is allowed by the experimental setup. In particular, we are able to report the entire migration trajectories of the particles as they reach their final focussing positions and extend our predictions to other geometries such as the square cross section. We believe complex effects originate due to a combination of inertia and elasticity in the weakly viscoelastic regime, where neither inertia nor elasticity are able to mask each other’s effect completely, leading to a number of intermediate focusing positions. The present study provides a fundamental new understanding of particle focusing in weakly elastic and strongly inertial flows, whose findings can be exploited for potentially multiple microfluidics-based biological sorting applications.
Funder
Royal Institute of Technology
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献