Non-linear dynamic response of a cable system with a tuned mass damper to stochastic base excitation via equivalent linearization technique

Author:

Weber Hanna,Kaczmarczyk Stefan,Iwankiewicz Radosław

Abstract

AbstractNon-linear dynamic model of a cable–mass system with a transverse tuned mass damper is considered. The system is moving in a vertical host structure therefore the cable length varies slowly over time. Under the time-dependent external loads the sway of host structure with low frequencies and high amplitudes can be observed. That yields the base excitation which in turn results in the excitation of a cable system. The original model is governed by a system of non-linear partial differential equations with corresponding boundary conditions defined in a slowly time-variant space domain. To discretise the continuous model the Galerkin method is used. The assumption of the analysis is that the lateral displacements of the cable are coupled with its longitudinal elastic stretching. This brings the quadratic couplings between the longitudinal and transverse modes and cubic nonlinear terms due to the couplings between the transverse modes. To mitigate the dynamic response of the cable in the resonance region the tuned mass damper is applied. The stochastic base excitation, assumed as a narrow-band process mean-square equivalent to the harmonic process, is idealized with the aid of two linear filters: one second-order and one first-order. To determine the stochastic response the equivalent linearization technique is used. Mean values and variances of particular random state variable have been calculated numerically under various operational conditions. The stochastic results have been compared with the deterministic response to a harmonic process base excitation.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3