A theta projection model for compressive creep behaviour of refractories at high temperature: application to alumina-spinel

Author:

Soares Thaís R. L.ORCID,Kieliba Ilona,Azenha Miguel,Tonnesen Thorsten,Lourenço Paulo B.

Abstract

AbstractThermomechanical loads are normally applied to refractory materials throughout their service life whichever is their practical use (e.g. steel ladle, rotary kiln furnaces). Among all the phenomena that the refractories are exposed to, the influence of creep behaviour is essential in determining their performance. Creep of refractories is usually represented by simple creep laws such as Norton-Bailey, which lack the capacity for generalization. The theta projection creep method, on the other hand, was proposed in the twentieth century to predict the creep of metals and alloys across different temperatures and stresses. The model is represented by one exponential equation capable of representing the complete creep curve, and coefficients that are temperature and stress-dependent, thus enabling the representation of complex nonlinear creep behaviour. Since refractories have similar creep responses to metals, the theta projection creep model is validated to characterize the compressive creep behaviour of alumina-spinel refractories at temperatures between 1200 and 1500 °C. Creep data from steady-state and transient temperature creep tests are used to calibrate the model. A regression by the least square method is applied to calculate the model’s parameters. The model shows good flexibility in fitting the test data of the alumina-spinel refractory over the three creep stages. A temperature and stress dependence model is derived for the theta coefficients, reducing the number of material parameters necessary to describe the material's behaviour. The experimental creep curves are presented, as well as the curves resulting from the identified parameters. The implications of the chosen creep data set on the definition of the model and its adequacy for this novel application are discussed.

Funder

H2020 Marie Skłodowska-Curie Actions

Ministério da Ciência, Tecnologia e Ensino Superior

Universidade do Minho

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3