Abstract
AbstractNonlocal hereditariness in Bernoulli–Euler beam is investigated in this paper. An approach to solve that problem is proposed and some analytical solutions are provided. To this aim, time-dependent hereditary behavior is modeled by means of non-integer order operators of the fractional linear viscoelasticity. While, space-dependent nonlocal phenomena are simulated through the integral stress-driven formulation. These two approaches are combined providing a new model able to simulate nonlocal viscoelastic bending problem. Several application samples of the proposed formulation and a thorough parametric study are presented showing the influences of hereditariness and nonlocal effects on the mechanical bending response. Proposed formulation can be useful for design and optimization of structures used in advanced applications when local elastic theory cannot be adopted.
Funder
Ministero dell’Istruzione, dell’Università e della Ricerca
Università degli Studi di Napoli Federico II
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献