Modeling of heat conduction through rate equations

Author:

Giorgi Claudio,Morro Angelo,Zullo Federico

Abstract

AbstractStarting from a classical thermodynamic approach, we derive rate-type equations to describe the behavior of heat flow in deformable media. Constitutive equations are defined in the material (Lagrangian) description where the standard time derivative satisfies the principle of objectivity. The statement of the Second Law is formulated in the classical form and the thermodynamic restrictions are then developed following a variant of the Coleman-Noll procedure where the entropy production too is given by a non-negative constitutive equation. Both the free energy and the entropy production are assumed to depend on a common set of independent variables involving, in addition to temperature, both temperature gradient and heat-flux vector together with their time derivatives. This approach results in rate-type constitutive function for the heat flux that are intrinsically consistent with the Second Law and easily amenable to analysis. In addition to providing already known models (e.g., Maxwell-Cattaneo-Vernotte’s and Jeffreys-like heat conductors), this scheme allows the formulation of new models of heat transport that are likely to apply also in nanosystems. This is consistent with the fact that higher-order time derivatives of the heat flux are in order when high-rate regimes occur.

Funder

Università degli Studi di Brescia

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3