Simulation and design of isostatic thick origami structures

Author:

Micheletti Andrea,Tiero Alessandro,Tomassetti Giuseppe

Abstract

AbstractThick origami structures are considered here as assemblies of polygonal panels hinged to each other along their edges according to a corresponding origami crease pattern. The determination of the internal actions in equilibrium with the external loads in such structures is not an easy task, owing to their high degree of static indeterminacy, and the likelihood of unwanted self-balanced internal actions induced by manufacturing imperfections. Here, we present a method for reducing the degree of static indeterminacy which can be applied to several thick origami structures to make them isostatic. The method utilizes sliding hinges, which allow relative translation along the hinge axis, to replace conventional hinges. After giving the analytical description of both types of hinges and describing a rigid folding simulation procedure based on the integration of the exponential map, we present the static analysis of a series of noteworthy examples based on the Miura-ori pattern, the Yoshimura pattern, and the Kresling pattern. Our method, based on kinematic-static duality, provides a novel design paradigm that can be applied for the design and realization of thick origami structures with adequate strength to resist external actions.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Gruppo Nazionale per la Fisica Matematica

Next Generation European Union

Università degli Studi di Roma Tor Vergata

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3