Cross-combined UKF for vehicle sideslip angle estimation with a modified Dugoff tire model: design and experimental results

Author:

Villano Elvis,Lenzo BasilioORCID,Sakhnevych Aleksandr

Abstract

AbstractThe knowledge of key vehicle states is crucial to guarantee adequate safety levels for modern passenger cars, for which active safety control systems are lifesavers. In this regard, vehicle sideslip angle is a pivotal state for the characterization of lateral vehicle behavior. However, measuring sideslip angle is expensive and unpractical, which has led to many years of research on techniques to estimate it instead. This paper presents a novel method to estimate vehicle sideslip angle, with an innovative combination of a kinematic-based approach and a dynamic-based approach: part of the output of the kinematic-based approach is fed as input to the dynamic-based approach, and vice-versa. The dynamic-based approach exploits an Unscented Kalman Filter (UKF) with a double-track vehicle model and a modified Dugoff tire model, that is simple yet ensures accuracy similar to the well-known Magic Formula. The proposed method is successfully assessed on a large amount of experimental data obtained on different race tracks, and compared with a traditional approach presented in the literature. Results show that the sideslip angle is estimated with an average error of 0.5 deg, and that the implemented cross-combination allows to further improve the estimation of the vehicle longitudinal velocity compared to current state-of-the-art techniques, with interesting perspectives for future onboard implementation.

Funder

Università degli Studi di Padova

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference51 articles.

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3