Length-change patterns of the medial collateral ligament and posterior oblique ligament in relation to their function and surgery

Author:

Willinger Lukas,Shinohara Shun,Athwal Kiron K.,Ball Simon,Williams Andy,Amis Andrew A.ORCID

Abstract

Abstract Purpose To define the length-change patterns of the superficial medial collateral ligament (sMCL), deep MCL (dMCL), and posterior oblique ligament (POL) across knee flexion and with applied anterior and rotational loads, and to relate these findings to their functions in knee stability and to surgical repair or reconstruction. Methods Ten cadaveric knees were mounted in a kinematics rig with loaded quadriceps, ITB, and hamstrings. Length changes of the anterior and posterior fibres of the sMCL, dMCL, and POL were recorded from 0° to 100° flexion by use of a linear displacement transducer and normalised to lengths at 0° flexion. Measurements were repeated with no external load, 90 N anterior draw force, and 5 Nm internal and 5 Nm external rotation torque applied. Results The anterior sMCL lengthened with flexion (p < 0.01) and further lengthened by external rotation (p < 0.001). The posterior sMCL slackened with flexion (p < 0.001), but was lengthened by internal rotation (p < 0.05). External rotation lengthened the anterior dMCL fibres by 10% throughout flexion (p < 0.001). sMCL release allowed the dMCL to become taut with valgus rotation (p < 0.001). The anterior and posterior POL fibres slackened with flexion (p < 0.001), but were elongated by internal rotation (p < 0.001). Conclusion The structures of the medial ligament complex react differently to knee flexion and applied loads. Structures attaching posterior to the medial epicondyle are taut in extension, whereas the anterior sMCL, attaching anterior to the epicondyle, is tensioned during flexion. The anterior dMCL is elongated by external rotation. These data offer the basis for MCL repair and reconstruction techniques regarding graft positioning and tensioning.

Funder

Smith and Nephew Co.

German Research Foundation

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3