Author:
Araujo-Pardo Gabriela,Rubio-Montiel Christian
Abstract
AbstractIn this paper we study the achromatic arboricity of the complete graph. This parameter arises from the arboricity of a graph as the achromatic index arises from the chromatic index. The achromatic arboricity of a graph G, denoted by $$A_{\alpha }(G)$$
A
α
(
G
)
, is the maximum number of colors that can be used to color the edges of G such that every color class induces a forest but any two color classes contain a cycle. In particular, if G is a complete graph we prove that $$\begin{aligned} \frac{1}{4}n^{\frac{3}{2}}-c_1n \le A_{\alpha }(G)\le \frac{1}{\sqrt{2}}n^{\frac{3}{2}}-c_2n \end{aligned}$$
1
4
n
3
2
-
c
1
n
≤
A
α
(
G
)
≤
1
2
n
3
2
-
c
2
n
where $$c_1$$
c
1
and $$c_2$$
c
2
are constants such that $$0<c_1,c_2<\frac{1}{2}$$
0
<
c
1
,
c
2
<
1
2
.
Funder
Universidad Nacional Autónoma de México
CONACyT
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,General Mathematics
Reference13 articles.
1. Araujo-Pardo, G., Montellano-Ballesteros, J.J., Rubio-Montiel, C., Strausz, R.: On the pseudoachromatic index of the complete graph II. Bol. Soc. Mat. Mex. 20(1), 17–28 (2014)
2. Araujo-Pardo, G., Montellano-Ballesteros, J.J., Rubio-Montiel, C., Strausz, R.: On the pseudoachromatic index of the complete graph III. Graphs Combin. 34(2), 277–287 (2018)
3. Araujo-Pardo, G., Montellano-Ballesteros, J.J., Strausz, R.: On the pseudoachromatic index of the complete graph. J. Gr. Theory 66(2), 89–97 (2011)
4. Araujo-Pardo, G., Rubio-Montiel, C.: Pseudoachromatic and connected-pseudoachromatic indices of the complete graph. Discrete Appl. Math. 231, 60–66 (2017)
5. Bollobás, B.: Extremal graph theory, volume 11 of London Mathematical Society Monographs. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, New York (1978)