Abstract
AbstractLet X be a Banach space. Fix a torsion-free commutative and cancellative semigroup S whose torsion-free rank is the same as the density of $$X^{**}$$
X
∗
∗
. We then show that X is complemented in $$X^{**}$$
X
∗
∗
if and only if there exists an invariant mean $$M:\ell _\infty (S,X)\rightarrow X$$
M
:
ℓ
∞
(
S
,
X
)
→
X
. This improves upon previous results due to Bustos Domecq (J Math Anal Appl 275(2):512–520, 2002), Kania (J Math Anal Appl 445:797–802, 2017), Goucher and Kania (Studia Math 260:91–101, 2021).
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,General Mathematics
Reference17 articles.
1. Badora, R., Ger, R., Páles, Zs.: Additive selections and the stability of the Cauchy functional equation, ANZIAM J. 44 (2003), 323–337
2. Cegarra, A.M., Petrich, M.: The rank of a commutative cancellative semigroup. Acta Math. Hungar. 112(1–2), 71–75 (2005)
3. Day, M.M.: Amenable semigroups. Illinois J. Math. 1(4), 509–544 (1957)
4. Bustos Domecq, H.: Vector-valued invariant means revisited. J. Math. Anal. Appl. 275(2), 512–520 (2002)
5. Gajda, Z.: Invariant means and representations of semigroups in the theory of functional equations, Prace Naukowe Uniwersytetu Śla̧skiego, Katowice (1992)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献