Author:
Boros Zoltán,Garda-Mátyás Edit
Abstract
AbstractIn this paper we give necessary conditions for quadratic functions $$ f :\mathbb {R}\rightarrow \mathbb {R}$$
f
:
R
→
R
that satisfy the additional equation $$ y^2 f(x) = x^2 f(y) $$
y
2
f
(
x
)
=
x
2
f
(
y
)
under the condition $$ xy = 1 \,$$
x
y
=
1
.
Funder
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
University of Debrecen
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,General Mathematics
Reference13 articles.
1. Aczél, J.: The general solution of two functional equations by reduction to functions additive in two variables and with the aid of Hamel bases, Glasnik Mat.-Fiz. Astronom. Ser. II Društvo Mat. Fiz. Hrvatske 20, 65–73 (1965)
2. Aczél, J., Dhombres, J.: Functional Equations in Several Variables, Encyclopaedia of Mathematics and its Applications, vol. 31. Cambridge Univ. Press, Cambridge-New York-New Rochelle-Melbourne-Sydney (1989)
3. Amou, M.: Quadratic functions satisfying an additional equation. Acta Math. Hungar. 162, 40–51 (2020). https://doi.org/10.1007/s10474-020-01047-0
4. Boros, Z., Garda-Mátyás, E.: Conditional equations for quadratic functions. Acta Math. Hungar. 154(2), 389–401 (2018)
5. Ebanks, B.: Characterizing ring derivations of all orders via functional equations: results and open problems. Aequati. Math. 89, 685–718 (2015)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献