Gradual transitivity in orthogonality spaces of finite rank

Author:

Vetterlein ThomasORCID

Abstract

AbstractAn orthogonality space is a set together with a symmetric and irreflexive binary relation. Any linear space equipped with a reflexive and anisotropic inner product provides an example: the set of one-dimensional subspaces together with the usual orthogonality relation is an orthogonality space. We present simple conditions to characterise the orthogonality spaces that arise in this way from finite-dimensional Hermitian spaces. Moreover, we investigate the consequences of the hypothesis that an orthogonality space allows gradual transitions between any pair of its elements. More precisely, given elements e and f, we require a homomorphism from a divisible subgroup of the circle group to the automorphism group of the orthogonality space to exist such that one of the automorphisms maps e to f, and any of the automorphisms leaves the elements orthogonal to e and f fixed. We show that our hypothesis leads us to positive definite quadratic spaces. By adding a certain simplicity condition, we furthermore find that the field of scalars is Archimedean and hence a subfield of the reals.

Funder

Austrian Science Fund

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,General Mathematics

Reference28 articles.

1. Brunet, O.: Orthogonality and dimensionality. Axioms 2, 477–489 (2013)

2. Dacey, J.R.: Orthomodular Spaces. University of Massachusetts, Amherst (1968). Ph.D. Thesis

3. Engesser, K., Gabbay, D.M., Lehmann, D. (eds.): Handbook of Quantum Logic and Quantum Structure. Quantum Structures. Elsevier, Amsterdam (2007)

4. Engesser, K., Gabbay, D.M., Lehmann, D. (eds.): Handbook of Quantum Logic and Quantum Structures. Quantum Logic. Elsevier, Amsterdam (2009)

5. Erné, M.: Closure. In: Mynard, F., Pearl, E. (eds.) “Beyond Topology”, Contemporary Mathematics, vol. 486, pp. 163–238. American Mathematical Society, Providence (2009)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finitary Prelinear and Linear Orthosets;International Journal of Theoretical Physics;2023-06-08

2. A Characterisation of Orthomodular Spaces by Sasaki Maps;International Journal of Theoretical Physics;2023-03-10

3. Linear Orthosets and Orthogeometries;International Journal of Theoretical Physics;2023-03-08

4. Transitivity and homogeneity of orthosets and inner-product spaces over subfields of $${{\mathbb {R}}}$$;Geometriae Dedicata;2022-05-19

5. Categories of orthogonality spaces;Journal of Pure and Applied Algebra;2022-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3