Another look at the Matkowski and Wesołowski problem yielding a new class of solutions

Author:

Morawiec JanuszORCID,Zürcher ThomasORCID

Abstract

AbstractThe following MW-problem was posed independently by Janusz Matkowski and Jacek Wesołowski in different forms in 1985 and 2009, respectively: Are there increasing and continuous functions $$\varphi :[0,1]\rightarrow [0,1]$$ φ : [ 0 , 1 ] [ 0 , 1 ] , distinct from the identity on [0, 1], such that $$\varphi (0)=0$$ φ ( 0 ) = 0 , $$\varphi (1)=1$$ φ ( 1 ) = 1 and $$\varphi (x)=\varphi (\frac{x}{2})+\varphi (\frac{x+1}{2})-\varphi (\frac{1}{2})$$ φ ( x ) = φ ( x 2 ) + φ ( x + 1 2 ) - φ ( 1 2 ) for every $$x\in [0,1]$$ x [ 0 , 1 ] ? By now, it is known that each of the de Rham functions $$R_p$$ R p , where $$p\in (0,1)$$ p ( 0 , 1 ) , is a solution of the MW-problem, and for any Borel probability measure $$\mu $$ μ concentrated on (0, 1) the formula $$\phi _\mu (x)=\int _{(0,1)}R_p(x)\, d\mu (p)$$ ϕ μ ( x ) = ( 0 , 1 ) R p ( x ) d μ ( p ) defines a solution $$\phi _\mu :[0,1]\rightarrow [0,1]$$ ϕ μ : [ 0 , 1 ] [ 0 , 1 ] of this problem as well. In this paper, we give a new family of solutions of the MW-problem consisting of Cantor-type functions. We also prove that there are strictly increasing solutions of the MW-problem that are not of the above integral form with any Borel probability measure $$\mu $$ μ .

Publisher

Springer Science and Business Media LLC

Reference22 articles.

1. Barnsley, M.: Fractals Everywhere. Academic Press Inc, Boston (1988)

2. Berg, L., Krüppel, M.: De Rham’s singular function and related functions. Z. Anal. Anwendungen 19(1), 227–237 (2000)

3. Berg, L., Krüppel, M.: De Rham’s singular function, two-scale difference equations and Appell polynomials. Results Math. 38(1–2), 18–47 (2000)

4. de Rham, G.: Sur quelques courbes definies par des equations fonctionnelles. Univ. e Politec. Torino. Rend. Sem. Mat. 16, 101–113 (1956/1957)

5. Elstrodt, J.: Maß- und Integrationstheorie. Springer-Lehrbuch. [Springer Textbook], 4th edn. Springer, Berlin (2005). Grundwissen Mathematik. [Basic Knowledge in Mathematics]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3