The solvability cardinal of the class of polynomials

Author:

Laczkovich Miklós

Abstract

AbstractLet G be an Abelian group, and let $${{\mathbb {C}}}^G$$ C G denote the set of complex valued functions defined on G. A map $$D: {{\mathbb {C}}}^G \rightarrow {{\mathbb {C}}}^G$$ D : C G C G is a difference operator, if there are complex numbers $$a_i$$ a i and elements $$b_i \in G$$ b i G $$(i=1,\ldots , n)$$ ( i = 1 , , n ) such that $$(Df)(x)=\sum _{i=1}^n a_i f(x+b_i)$$ ( D f ) ( x ) = i = 1 n a i f ( x + b i ) for every $$f\in {{\mathbb {C}}}^G $$ f C G and $$x\in G$$ x G . By a system of difference equations we mean a set of equations $$\{ D_i f=g_i : i\in I\}$$ { D i f = g i : i I } , where I is an arbitrary set of indices, $$D_i$$ D i is a difference operator and $$g_i \in {{\mathbb {C}}}^G$$ g i C G is a given function for every $$i\in I$$ i I , and f is the unknown function. The solvability cardinal $$\mathrm{sc} \,({{\mathcal {F}}})$$ sc ( F ) of a class of functions $${{\mathcal {F}}} \subset {{\mathbb {C}}}^G$$ F C G is the smallest cardinal number $$\kappa $$ κ with the following property: whenever S is a system of difference equations on G such that each subsystem of S of cardinality $$<\kappa $$ < κ has a solution in $${{\mathcal {F}}}$$ F , then S itself has a solution in $${{\mathcal {F}}}$$ F . The behaviour of $$\mathrm{sc} \,({{\mathcal {F}}})$$ sc ( F ) is rather erratic, even for classes of functions defined on $${{\mathbb {R}}}$$ R . For example, $$\mathrm{sc} \,({{\mathbb {C}}}[x])=3$$ sc ( C [ x ] ) = 3 , but $$\mathrm{sc} \,({\mathcal {TP}}) =\omega _1$$ sc ( TP ) = ω 1 , where $${\mathcal {TP}}$$ TP is the set of trigonometric polynomials; $$\mathrm{sc} \,({{\mathbb {C}}}^{{\mathbb {R}}})=\omega $$ sc ( C R ) = ω , but $$\mathrm{sc} \,({\mathcal {DF}}) =(2^\omega )^+$$ sc ( DF ) = ( 2 ω ) + , where $${\mathcal {DF}}$$ DF is the set of functions having the Darboux property. Our aim is to determine or to estimate the solvability cardinal of the class of polynomials defined on $${{{\mathbb {R}}}}^n$$ R n , on normed linear spaces and, in general, on topological Abelian groups. Let $${{\mathcal {P}}}_G$$ P G denote the class of polynomials defined on the group G. After presenting some general estimates we prove that $$\mathrm{sc} \,({{\mathbb {C}}}[x_1 ,\ldots ,x_n ])=\omega $$ sc ( C [ x 1 , , x n ] ) = ω if $$2\le n<\infty $$ 2 n < , and $$\mathrm{sc} \,({{\mathcal {P}}}_X)=\omega _1$$ sc ( P X ) = ω 1 if X is a normed linear space of infinite dimension. For discrete Abelian groups we show that $$\mathrm{sc} \,({{\mathcal {P}}}_G)=3$$ sc ( P G ) = 3 if $$r_0 (G)\le 1$$ r 0 ( G ) 1 , $$\mathrm{sc} \,({{\mathcal {P}}}_G)=\omega $$ sc ( P G ) = ω if $$2\le r_0 (G)<\infty $$ 2 r 0 ( G ) < , and $$\mathrm{sc} \,({{\mathcal {P}}}_G)\ge \omega _1$$ sc ( P G ) ω 1 if $$r_0 (G)$$ r 0 ( G ) is infinite, where $$r_0 (G)$$ r 0 ( G ) denotes the torsion free rank of G. The solvability of systems of difference equations is closely connected to the existence of projections of function classes commuting with translations (see Theorem 7.1). As an application we construct a projection from $${{\mathbb {C}}}^{{{{\mathbb {R}}}}^n}$$ C R n onto $${{\mathbb {C}}}[x_1 ,\ldots ,x_n ]$$ C [ x 1 , , x n ] commuting with translations by vectors having rational coordinates (Theorem 7.4).

Funder

Hungarian Scientific Research Fund

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3