Operators with a non-trivial closed invariant affine subspace

Author:

Bračič Janko

Abstract

AbstractWe are concerned with the question of the existence of an invariant proper affine subspace for an operator A on a complex Banach space. It turns out that the presence of the number 1 in the spectrum of A or in the spectrum of its adjoint operator $$A^*$$ A is crucial. For instance, an algebraic operator has an invariant proper affine subspace if and only if 1 is its eigenvalue. For an arbitrary operator A, we show that it has an invariant proper hyperplane if and only if 1 is an eigenvalue of $$A^*$$ A . If A is a power bounded operator, then every invariant proper affine subspace is contained in an invariant proper hyperplane, moreover, A has a non-trivial invariant cone.

Publisher

Springer Science and Business Media LLC

Reference8 articles.

1. Conway, J.B.: A course in functional analysis, 2nd edition, GTM 96. Springer-Verlag, New York, Inc (1990)

2. Defant, A., Floret, K.: Tensor norms and operator ideals, Mathematics studies 176, North-Holland (1993)

3. Ryan, R.: Introduction to tensor products of Banach spaces. Springer-Verlag, London (2002)

4. Sarason, D.: The $$H^p$$ spaces of an annulus. Mem. Amer. Math. Soc. 56, 78 (1965)

5. Semenov, E.M., Sukochev, F.A., Usachev, A.S.: Geometry of Banach limits and their applications, Uspekhi Mat. Nauk 75, no. 4(454), 153–194 (2020)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3