Abstract
AbstractIt is well known that Heron’s equality provides an explicit formula for the area of a triangle, as a symmetric function of the lengths of its edges. It has been extended by Brahmagupta to quadrilaterals inscribed in a circle (cyclic quadrilaterals). A natural problem is trying to further generalize the result to cyclic polygons with a larger number of edges. Surprisingly, this has proved to be far from simple, and no explicit solutions exist for cyclic polygons having $$n>4$$
n
>
4
edges. In this paper we investigate such a problem by following a new and elementary approach, based on the idea that the simple geometry underlying Heron’s and Brahmagupta’s equalities hides the real players of the game. In details, we propose to focus on the dissection of the edges determined by the incircles of a suitable triangulation of the cyclic polygon, showing that this approach leads to an explicit formula for the area as a symmetric function of the lengths of these segments. We also show that such a symmetry can be rediscovered in Heron’s and Brahmagupta’s results, which consequently represent special cases of the provided general equality.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Maximizing the Area of Polygons via Quasicyclic Polygons;Studia Scientiarum Mathematicarum Hungarica;2024-04-15