Abstract
AbstractTo a metric space X we associate a compact topological space $$\nu '({X})$$
ν
′
(
X
)
called the corona of X. Then a coarse map $$f:X\rightarrow Y$$
f
:
X
→
Y
between metric spaces is mapped to a continuous map $$\nu '({f}):\nu '({X})\rightarrow \nu '({Y})$$
ν
′
(
f
)
:
ν
′
(
X
)
→
ν
′
(
Y
)
between coronas. Sheaf cohomology assigned to a coarse metric space is preserved and reflected by the corona functor. This work reveals new tools to analyze the Higson corona.
Publisher
Springer Science and Business Media LLC
Reference19 articles.
1. Banakh, T., Chervak, O., Zdomskyy, L.: On character of points in the Higson corona of a metric space. Comment. Math. Univ. Carol. 54(2), 159–178 (2013)
2. Brandenburg, M.: Non-unital gelfand duality (2015)
3. Cornulier, Y., de la Harpe, P.: Metric geometry of locally compact groups, volume 25 of EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich (2016). https://doi.org/10.4171/166. Winner of the 2016 EMS Monograph Award
4. Dranishnikov, A.N., Keesling, J., Uspenskij, V.V.: On the Higson corona of uniformly contractible spaces. Topology 37(4), 791–803 (1998). https://doi.org/10.1016/S0040-9383(97)00048-7
5. Dydak, J.: Ends and simple coarse structures. Mediterr. J. Math. 17(1), Paper No. 4, 22 (2020). https://doi.org/10.1007/s00009-019-1437-4