Short-term power load forecasting using integrated methods based on long short-term memory
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Engineering,General Materials Science
Link
http://link.springer.com/content/pdf/10.1007/s11431-019-9547-4.pdf
Reference23 articles.
1. Amjady N. Short-term hourly load forecasting using time-series modeling with peak load estimation capability. IEEE Trans Power Syst, 2001, 16: 798–805
2. Fan G F, Peng L L, Hong W C, et al. Electric load forecasting by the SVR model with differential empirical mode decomposition and auto regression. Neurocomputing, 2016, 173: 958–970
3. Hu R, Wen S, Zeng Z, et al. A short-term power load forecasting model based on the generalized regression neural network with decreasing step fruit fly optimization algorithm. Neurocomputing, 2017, 221: 24–31
4. Ryu S, Noh J, Kim H. Deep neural network based demand side short term load forecasting. In: Proceedings of the 2016 IEEE International Conference on Smart Grid Communications. IEEE, 2016. 10: 308
5. Dedinec A, Filiposka S, Dedinec A, et al. Deep belief network based electricity load forecasting: An analysis of Macedonian case. Energy, 2016, 115: 1688–1700
Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An enhanced model based on deep operator network for very short-term forecasting of ship motion;Physics of Fluids;2024-08-01
2. Robust Dynamic Economic Dispatch in Smart Grids Using an Intelligent Learning Technology;IEEE Transactions on Network Science and Engineering;2024-07
3. Short time load forecasting for Urmia city using the novel CNN-LTSM deep learning structure;Electrical Engineering;2024-05-09
4. Electricity Correlation Evaluation Based on Improved Logistic Algorithm Integrating Periodic Characteristics of Load and Temperature;Energies;2023-08-02
5. Highway icing time prediction with deep learning approaches based on data from road sensors;Science China Technological Sciences;2023-06-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3