Abstract
AbstractLake Balaton, the largest lake in Central Europe, underwent severe eutrophication from the 1960s to the 1990s, due to phosphorus loadings from external anthropogenic sources. The subsequent and complex eutrophication control and lake restoration program resulted in a significant decrease in the external phosphorus loading to the lake. Consequently, Lake Balaton has been returning to its former meso-eutrophic character. In this paper, we explore the long-term dynamics of chlorophyll a (Chl a) concentration, a proxy for phytoplankton biomass, and zooplankton biomass in Lake Balaton during its re-oligotrophication period from 2001 to 2017, and attempt to draw some conclusions on the subsequent changes in the fish stock. We found a proportional decrease in zooplankton and phytoplankton biomasses at moderate phytoplankton levels. However, below a certain phytoplankton concentration (< 10 μg l−1 Chl a), the decrease in phytoplankton biomass was not coupled with a further decline in zooplankton biomass because the fraction of small phytoplankton, edible for zooplankton, showed a much smaller decrease in biomass compared with large non-edible phytoplankton. Thus, improvements in water quality (i.e., reduced nutrient loading), partly via concomitant changes in the phytoplankton size distribution, did not cause a large difference in the fish stock in this shallow lake.
Funder
ELKH Centre for Ecological Research
Hungarian Scientific Research Fund
Economic Development and Innovation Operational Programme
Publisher
Springer Science and Business Media LLC
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献