The microbiome of the endosymbiotic Symbiodiniaceae in corals exposed to thermal stress

Author:

Gardner Stephanie Grace,Leggat WilliamORCID,Ainsworth Tracy Danielle

Abstract

AbstractThe coral reef crisis has influenced research for over two decades, during which time the capacity of corals to withstand and respond to environmental stress has been documented from the cellular to ecosystem level. Over the past decade, research is increasingly working towards uncovering the extent of coral–bacterial interactions, finding that diverse and stable microbial interactions can be indicative of the health of the coral host. However, we have yet to determine at which level of organismal organisation these interactions occur, in particular those with the coral’s photosynthetic dinoflagellate symbionts. This information is critical if we are to understand the impact of stress on meta-organism functioning. Using 16S gene amplicon sequencing, we investigated the bacterial microbiome of endosymbiotic Symbiodiniaceae from thermally stressed Acropora aspera, under 3 ecologically relevant temperature trajectories (defined as protective, repetitive and single) that are expected under a changing climate. We show that endosymbiotic Symbiodiniaceae host a distinct and diverse bacterial assemblage when compared with the A. aspera host. Alphaproteobacteria (mainly Rhodobacteraceae and Bradyrhizobiaceae), from the Rhizobiales order dominated the Symbiodiniaceae microbiome, while Gammaproteobacteria (mainly Endozoicomonadaceae) dominated the coral microbiome. The Symbiodiniaceae core microbiome also reflected the distinct microbiomes of the two partners, specifically, Rhizobiales were not present in the A. aspera core, while Endozoicomonadaceae were not present in the Symbiodiniaceae core. We show the Symbiodiniaceae-associated microbiome was highly responsive to increases in temperature, and the microbial consortium was significantly altered in the Symbiodiniaceae retained in the host exposed to different temperature. Most notably, Myxococcolaes were up to 25-fold higher relative abundance in dinoflagellate partner microbiomes under the single temperature trajectory, compared with the repetitive and control treatments. The distinct composition of bacteria associated with Symbiodiniaceae suggests a previously unrecognised, yet important functional role of these associations to overall coral health, which is increasingly important as reefs decline worldwide. Our study provides the first characterisation of Symbiodiniaceae-associated microbes from a coral host under a range of temperature trajectories occurring on the Great Barrier Reef.

Funder

Australian Research Council

University of New South Wales

Publisher

Springer Science and Business Media LLC

Subject

Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3