Effects of hypolimnetic aeration on the quantity and quality of settling material in a eutrophied dimictic lake

Author:

Niemistö Juha,Silvonen Soila,Horppila Jukka

Abstract

AbstractEffects of hypolimnetic aeration (pumping of epilimnetic water into the hypolimnion) on the quantity of settling material in eutrophied Lake Vesijärvi, Finland were studied by comparing spatially comprehensive gross sedimentation rates as dry and organic matter prior to aeration activity and during two aerated years. Possible changes in the organic matter (as loss on ignition, LOI), carbon (C) and nitrogen (N) contents and changes in the C/N ratio of the settling material and surface sediment were quantified. Thermal stratification broke up earlier due to aeration and was followed by sedimentation peaks. The absolute amount of dry and organic matter as well as C and N settling to the lake bottom were significantly higher in the aerated years. Increased sedimentation rates were especially pronounced in the deep zones indicating enhanced sediment focusing. Increased sedimentation of C and N reflected higher primary production during the aerated years, which most likely was associated with increased temperature and turbulence and the subsequent regeneration and recycling of nutrients in the water body. Aeration seemed to slightly enhance degradation, but contrary to its ultimate aim, it failed to decrease the phosphorus content of the water column and deposits of organic material in the deep zones of the lake.

Funder

Vesijärvi Foundation

Maa- ja vesitekniikan tuki ry

Publisher

Springer Science and Business Media LLC

Subject

Aquatic Science

Reference46 articles.

1. Ashley, K. L., 1983. Hypolimnetic aeration of a naturally eutrophic lake: physical and chemical effects. Canadian Journal of Fisheries and Aquatic Sciences 40: 1343–1359.

2. Bendtsen, J., K. E. Gustafsson, J. Lehtoranta, E. Saarijärvi, K. Rasmus & H. Pitkänen, 2013. Modeling and tracer release experiment on forced buoyant plume convection from coastal oxygenation. Boreal Environment Research 18: 37–52.

3. Bergström, I., P. Kortelainen, J. Sarvala & K. Salonen, 2010. Effects of temperature and sediment properties on benthic CO2 production in an oligotrophic boreal lake. Freshwater Biology 5: 1747–1757.

4. Beutel, M. W., 2006. Inhibition of ammonia release from anoxic profundal sediments in lakes using hypolimnetic oxygenation. Ecological Engineering 28: 271–279.

5. Beutel, M. W. & A. J. Horne, 1999. A review of the effects of hypolimnetic oxygenation on lake and reservoir water quality. Lake and Reservoir Management 15: 285–297.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3