Abstract
AbstractGroundwater contributions to streamflow significantly influence the structure and function of riverine ecosystems, particularly in glacierized catchments where there are marked differences in water sources and subsurface flow paths. Here, we investigated spatial and temporal variation in relationships between water sources, flow paths, physical and chemical processes, organic matter, microbial biofilms, and macroinvertebrates across groundwater-fed streams in the glacierized Toklat River catchment of Denali National Park, Alaska. Streams fed predominantly by seepage from the valley sides were perennial, whereas streams sustained by glacial meltwater seepage were ephemeral. Differences in environmental conditions between flow regimes appeared to influence spatial and temporal patterns of organic matter, linking to macroinvertebrate community dynamics. Macroinvertebrates in perennial streams were supported by fine particulate organic matter from subsurface flow paths during summer, transitioning to a combination of fine particulate matter and leaf litter in autumn. In comparison, macroinvertebrates inhabiting ephemeral streams, which only flowed during autumn, were supported by leaf litter. Some macroinvertebrate taxa were unaffected by turnover in organic matter, indicating potential plasticity in organic matter resource use. Findings highlight the importance of considering spatial and temporal variation in groundwater-fed streams, considering that projected hydrological changes under a changing climate may have significant implications for these systems.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献