Effects of high-altitude reservoirs on the structure and function of lotic ecosystems: a case study in Italy

Author:

Petruzziello Antonio,Bonacina Luca,Marazzi Francesca,Zaupa Silvia,Mezzanotte Valeria,Fornaroli RiccardoORCID

Abstract

AbstractAlpine and pre-alpine lotic ecosystems are often remote and not affected by humans, which makes them some of the world’s most pristine ecosystems. However, their status is often altered by the presence of reservoirs that are built to fulfill agricultural needs and hydroelectric demands. These reservoirs also disrupt stream continuity and alter the magnitude, timing, and frequency of natural flows. The present work assessed how high-altitude reservoirs affect the riverine ecosystems focusing on the following: (i) the macroinvertebrate communities, (ii) the breakdown of organic matter, and (iii) the thermal regime. Stretches altered by high-altitude reservoirs had the best conditions for most macroinvertebrate families due to a more stable flow conditions. The breakdown rate of coarse particulate organic matter was not affected by high-altitude reservoirs but its availability was higher in altered compared to pristine stretches. The presence of hydroelectric power plants modified the stream thermal regime. Reservoirs mitigate the atmospheric influence on stream water temperature while run of the river plants strengthen it in the diverted stretches. Where both these alterations were present, the thermal regime of the stream was more similar to the natural ones compared to stretches subjected to only one kind of alteration. This research showed how river impoundment alters the structure of macroinvertebrate communities and the function of the downstream lotic ecosystems and can provide the basis to correctly guide management strategies for lotic ecosystems affected by hydrological alterations.

Funder

Università degli Studi di Milano - Bicocca

Publisher

Springer Science and Business Media LLC

Subject

Aquatic Science

Reference91 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3