Abstract
AbstractAlpine and pre-alpine lotic ecosystems are often remote and not affected by humans, which makes them some of the world’s most pristine ecosystems. However, their status is often altered by the presence of reservoirs that are built to fulfill agricultural needs and hydroelectric demands. These reservoirs also disrupt stream continuity and alter the magnitude, timing, and frequency of natural flows. The present work assessed how high-altitude reservoirs affect the riverine ecosystems focusing on the following: (i) the macroinvertebrate communities, (ii) the breakdown of organic matter, and (iii) the thermal regime. Stretches altered by high-altitude reservoirs had the best conditions for most macroinvertebrate families due to a more stable flow conditions. The breakdown rate of coarse particulate organic matter was not affected by high-altitude reservoirs but its availability was higher in altered compared to pristine stretches. The presence of hydroelectric power plants modified the stream thermal regime. Reservoirs mitigate the atmospheric influence on stream water temperature while run of the river plants strengthen it in the diverted stretches. Where both these alterations were present, the thermal regime of the stream was more similar to the natural ones compared to stretches subjected to only one kind of alteration. This research showed how river impoundment alters the structure of macroinvertebrate communities and the function of the downstream lotic ecosystems and can provide the basis to correctly guide management strategies for lotic ecosystems affected by hydrological alterations.
Funder
Università degli Studi di Milano - Bicocca
Publisher
Springer Science and Business Media LLC
Reference91 articles.
1. Albariño, R. J. & E. G. Balseiro, 2002. Leaf litter breakdown in Patagonian streams: native versus exotic trees and the effect of invertebrate size. Aquatic Conservation: Marine and Freshwater Ecosystems 12: 181–192.
2. Allan, R. P., 2012. The role of water vapour in Earth’s energy flows. Surveys in Geophysics 33: 557–564.
3. Anselmetti, F. S., R. Bühler, D. Finger, S. Girardclos, A. Lancini, C. Rellstab & M. Sturm, 2007. Effects of Alpine hydropower dams on particle transport and lacustrine sedimentation. Aquatic Sciences 69: 179–198.
4. APHA/AWWA/WEF, 2012. Standard Methods for the Examination of Water and Wastewater. Standard Methods 541.
5. AQEM Consortium, 2002. Manual for the application of the AQEM system. A comprehensive method to assess European streams using benthic macroinvertebrates, developed for the purpose of the Water Framework Directive. Version 1.0.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献