Spatial genetic patterns of Octopus vulgaris Mediterranean populations support the hypothesis of a transitional zone across the Siculo-Tunisian Strait

Author:

Fadhlaoui-Zid Karima,Cossu PieroORCID,Sanna Daria,Scarpa Fabio,Lai Tiziana,Castelli Alberto,Casu Marco,Maltagliati Ferruccio

Abstract

AbstractRecent research hypothesised that the Siculo-Tunisian Strait might fit, at least for some species, the picture of a genetic transitional zone instead of a sharp genetic break between the Western and Eastern Mediterranean basins. The present study aimed at using the common Octopus, Octopus vulgaris as an empirical test-case to evaluate this hypothesis. To accomplish this goal, 458 new sequences of the mitochondrial gene cytochrome c oxidase subunit I were used. Combining the new sequences with those available on public databases, we assembled a dataset containing 920 sequences to investigate the spatial genetic patterns across 34 Mediterranean populations of O. vulgaris. The genetic structure of this species was assessed combining analysis of molecular variance and Median-Joining networks. Results supported the hypothesis of a complex spatial genetic pattern across the Sicilian channel. Contemporary factors, such as marine currents, likely affect the species’ genetic structuring across this area. Overall, our results highlighted that focusing the attention on the whole transitional area rather than on a unique genetic break might help to detect similar patterns across different species. Finally, acknowledging the occurrence of complex spatial genetic patterns across transitional zones may improve stock identification and management practices for commercially valuable species.

Funder

Università degli Studi di Sassari

Publisher

Springer Science and Business Media LLC

Subject

Aquatic Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Octopus vulgaris, the common octopus;Octopus Biology and Ecology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3