Abstract
AbstractThe objective of this study was to identify correlations between environmental variables and cyanobacterial diversity, succession and dominance in three Australian water supply reservoirs. We assessed up to 15 years of in-lake water quality monitoring data from Lake Wivenhoe and Lake Tingalpa (Queensland), and Lake Myponga (South Australia). Lakes Wivenhoe and Tingalpa, subject to a subtropical climate, had higher cyanobacterial richness than Lake Myponga in temperate South Australia. Richness in the subtropical lakes was positively correlated (P < 0.05) with total cyanobacteria biomass, and cyanobacteria biovolume > 0.03 mm3/l (Alert level 1; World Health Organization) was often composed of multiple cyanobacteria species. Peaks in total cyanobacteria biomass and diversity occurred in all three lakes from late spring to early autumn. Unicellular picocyanobacterial dominance was negatively correlated (P < 0.05) with total nitrogen while dominance of colonial and filamentous species with larger cells (e.g. Microcystis spp., Raphidiopsis spp., Dolichospermum circinale) was positively correlated (P < 0.05) with total phosphorus. Among the species with larger cells, diazotrophic D. circinale often dominated when total nitrogen was at low concentrations. Our results support decision making for selecting cyanoHAB control strategies based on single- or multi-species dominance and reinforce that new monitoring technologies could support species-level assessments.
Publisher
Springer Science and Business Media LLC
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献