Funder
the National Key Research and Development Program of China
NSFC
the Project Supported by Natural Science Basic Research Plan in Shaanxi Province of China
the PhD grant of the Chinese Educational Ministry
the 111 project
Publisher
Springer Science and Business Media LLC
Subject
Safety, Risk, Reliability and Quality,Software
Reference65 articles.
1. Abawajy, J., & Kelarev, A. (2017). Iterative classifier fusion system for the detection of Android malware. IEEE Transaction on Big Data., 5, 1–12.
2. Alam, M.S., Vuong, S.T. (2013). Random forest classification for detecting Android malware. In: 2013 I.E. International Conference on Green Computing and Communications & IEEE Internet of Things & IEEE Cyber, Physical and Social Computing. pp. 663–669. IEEE, Beijing.
3. Ali, A., Rida, K., Marc, L. (2014). A Gaussian mixture model for dynamic detection of abnormal behavior in smartphone applications. In: 2014 Global Information Infrastructure and Networking Symposium (GIIS). pp.1–6. IEEE, Montreal.
4. Almin, S. B., & Chatterjee, M. (2015). A novel approach to detect Android malware. Procedia Computer Science., 45, 407–417.
5. Amos, B., Turner, H., White, J. (2013). Applying machine learning classifiers to dynamic Android malware detection at scale. In: Wireless Communication and Mobile Computing Conference (IWCME). vol. 14, pp. 1666–1671. IEEE, Nicosia. doi:
10.1109/IWCMC.2013.6583806
.
Cited by
99 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献