Empirical validation of object-oriented metrics for predicting fault proneness models

Author:

Singh Yogesh,Kaur Arvinder,Malhotra Ruchika

Publisher

Springer Science and Business Media LLC

Subject

Safety, Risk, Reliability and Quality,Software

Reference59 articles.

1. Afzal, W. (2007). Metrics in software test planning and test design processes. Ph.D. Disseration.

2. Aggarwal, K. K., Singh, Y., Kaur, A., & Malhotra, R. (2005). Software reuse metrics for object-oriented systems. In Proceedings of the Third ACIS Int’l Conference On Software Engineering Research, Management and Applications (SERA ‘05), 48–55.

3. Aggarwal, K. K., Singh, Y., Kaur, A., & Malhotra, R. (2006a). Empirical study of object-oriented metrics. Journal of Object Technology, 5(8), 149–173.

4. Aggarwal, K. K., Singh, Y., Kaur, A., & Malhotra, R. (2006b). Investigating the effect of coupling metrics on fault proneness in object-oriented systems. Software Quality Professional, 8(4), 4–16.

5. Aggarwal, K. K., Singh, Y., Kaur, A., & Malhotra, R. (2007). Application of artificial neural network for predicting fault proneness models. International conference on information systems, technology and management (ICISTM 2007), March 12–13, New Delhi, India.

Cited by 120 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Software Bug Report Detection Methods Based on Machine Learning Techniques;2024 2nd International Conference on Advancement in Computation & Computer Technologies (InCACCT);2024-05-02

2. Machine learning-based defect prediction model using multilayer perceptron algorithm for escalating the reliability of the software;The Journal of Supercomputing;2023-12-19

3. On the adoption and effects of source code reuse on defect proneness and maintenance effort;Empirical Software Engineering;2023-12-12

4. An Experience in the Evaluation of Fault Prediction;Product-Focused Software Process Improvement;2023-12-02

5. An empirical analysis of software fault proneness using factor analysis with regression;Multimedia Tools and Applications;2023-11-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3