Funder
National Natural Science Foundation of China
Defense Industrial Technology Development Program
Natural Science Foundation of Hubei Province
Open Fund of Hubei Key Lab. of Transportation of IoT
Publisher
Springer Science and Business Media LLC
Subject
Safety, Risk, Reliability and Quality,Software
Reference41 articles.
1. Alonso, J., Silva, L., Andrzejak, A., Silva, P., & Torres, J. (2007). High-available Grid services through the use of virtualized clustering, IEEE-GRID (pp. 34–41). Austin, USA.
2. Alonso, J., Belanche, L., & Avresky, D. R. (2011). Predicting software anomalies using machine learning techniques. In 2011 IEEE 10th international symposium on network computing and applications (pp. 163–170).
3. Alonso, J., Matias, R., Vicente, E., Maria, A., & Trivedi, K. S. (2013). A comparative experimental study of software rejuvenation overhead. Performance Evaluation, 70(3), 231–250.
4. An, C., & Rockmore, D. (2016). Predicting phone usage behaviors with sensory data using a hierarchical generative model. In Trends and applications in knowledge discovery and data mining (pp. 75–87). Cham.
5. Andrzejak, A., & Silva, L. (2008). Using machine learning for non-intrusive modeling and prediction of software aging. 11th IEEE/IFIP Network Operations and Management Symposium (NOMS), 25–32.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献