Keyword-labeled self-admitted technical debt and static code analysis have significant relationship but limited overlap

Author:

Rantala Leevi,Mäntylä Mika,Lenarduzzi Valentina

Abstract

AbstractTechnical debt presents sub-optimal choices made in development, which are beneficial in the short term but not in the long run. Consciously admitted debt, which is marked with a keyword, e.g., TODO, is called keyword-labeled self-admitted technical debt (KL-SATD). KL-SATD can lead to adverse effects in software development, e.g., to a rise in complexity within the developed software. We investigated the relationship between KL-SATD from source code comments and reports from the highly popular industrial program analysis tool SonarQube. The goal was to find which SonarQube metrics and issues are related to KL-SATD introduction and removal and how many KL-SATD in the context of an issue addresses that issue. We performed a study with 33 software repositories. We analyzed the changes in SonarQube reports (sqale index, reliability and security remediation metrics, and SonarQube issues) and the relationship to KL-SATD addition and removal with mixed model analysis. We manually annotated a sample to investigate how many KL-SATD comments are in the context of SonarQube issues and how many address them directly. KL-SATD is associated with a reduction in code maintainability measured with SonarQube’s sqale index. KL-SATD removal is associated with an increase in code maintainability (sqale index) and reliability measured with SonarQube’s reliability remediation effort. The introduction and removal of KL-SATD have a predominantly relationship with code smells, and not with vulnerabilities and bugs. Manual annotation revealed that 36% of KL-SATD comments are in the context of a SonarQube issue, but only 15% of the comment address an issue. This means that despite of statistical relationship between KL-SATD comments and SonarQube reports there is a large set of KL-SATD comments that are in areas that Sonarqube reports as clean or free of maintainability issues. KL-SATD introduction and removal are connected mainly to code smells, connecting them to maintainability rather than reliability or security. This is reinforced by the relationship with the sqale index, as well as the dominance of code smells in SonarQube issues. Many KL-SATD issues have characteristics going beyond static analysis tools and require future studies extending the capabilities of the current tools. As KL-SATD comments and SonarQube reports appear to have limited overlap, it suggests that they are complementary and both are needed for getting a comprehensive view coverage of code maintainability. The study also presents rules violations developers should be aware of regarding KL-SATD introduction and removal.

Funder

Infotech Oulu

Academy of Finland

University of Oulu

Publisher

Springer Science and Business Media LLC

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3