An empirical evaluation of defect prediction approaches in within-project and cross-project context
Author:
Publisher
Springer Science and Business Media LLC
Subject
Safety, Risk, Reliability and Quality,Software
Link
https://link.springer.com/content/pdf/10.1007/s11219-023-09615-7.pdf
Reference83 articles.
1. Agrawal, A., & Malhotra, R. (2019). Cross project defect prediction for open source software. International Journal of Information Technology.
2. Al Majzoub, H., Elgedawy, I., Akaydın, O., & KöseUlukök, M. (2020). Hcab-smote: A hybrid clustered affinitive borderline smote approach for imbalanced data binary classification.Arabian Journal for Science and Engineering, vol.45, no.4, pp.3205–3222.
3. Arisholm, E., Briand, L. C., & Johannessen, E. B. (2010). A systematic and comprehensive investigation of methods to build and evaluate fault prediction models. Journal of Systems and Software, 83, 2–17.
4. Arisholm, E., Briand, & L. C., Fuglerud, M. (2007). Data mining techniques for building fault-proneness models in telecom java software in The 18th IEEE International Symposium on Software Reliability (ISSRE’07), IEEE.
5. Barua, S., Islam, M. M., Yao, X., & Murase, K. (2014). MWMOTE-majority weighted minority oversampling technique for imbalanced data set learning. IEEE Transactions on Knowledge and Data Engineering, 26, 405–425.
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An optimized deep network-based intermediate code generation for the mathematical expression;Multimedia Tools and Applications;2024-07-09
2. A comparative study of software defect binomial classification prediction models based on machine learning;Software Quality Journal;2024-07-03
3. Handling class overlap and imbalance using overlap driven under-sampling with balanced random forest in software defect prediction;Innovations in Systems and Software Engineering;2024-06-18
4. Cross-Project Defect Prediction Based on Domain Adaptation and LSTM Optimization;Algorithms;2024-04-24
5. Advanced Framework for Integrating Risks into an Organizational Setting;Journal of Enterprise and Business Intelligence;2024-01-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3